organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[4-(3-Methoxybenzamido)phenoxy]-Nmethylpicolinamide

Na-Na Meng,^a Ting-Ting Huang,^a De-Kuan Li,^b Wen-Xin Zhang^c and Luo-Ting Yu^a*

^aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China, ^bKey Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610041, People's Republic of China, and ^cDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China

Correspondence e-mail: luodyu@163.com

Received 10 December 2009; accepted 29 December 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.085; data-to-parameter ratio = 8.0.

In the title compound, $C_{21}H_{19}N_3O_4$, the central benzene ring makes dihedral angles of 78.54 (6) and 75.30 (6) $^{\circ}$ with the pyridine and 3-methoxyphenyl rings, respectively. An intramolecular N-H···N interaction occurs, generating an S(?). The crystal packing shows intermolecular $N-H \cdots O$ hydrogen-bonding interactions between the N-H groups and the O atoms of the 3-methoxyphenyl ring and the carbonyl groups of the amide functions. Intermolecular C- $H \cdot \cdot \cdot O$ interactions are also present.

Related literature

For related compounds and their biological activity, see: Khire et al. (2004); Dominguez et al. (2007).

Experimental

Crystal data C21H10N3O4 a = 5.0915 (10) Å $M_r = 377.39$ b = 8.3251 (17) ÅTriclinic, P1 c = 11.611 (2) Å

$\alpha = 71.29 \ (3)^{\circ}$	
$\beta = 87.74 \ (3)^{\circ}$	
$\gamma = 76.10 \ (3)^{\circ}$	
V = 452.14 (16) Å ³	
Z = 1	

Data collection

Rigaku Saturn CCD area-detector	3733 measured reflections
diffractometer	2108 independent reflections
Absorption correction: multi-scan	1811 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.026$
$T_{\rm min} = 0.968, T_{\rm max} = 0.982$	

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.035 \\ wR(F^2) = 0.085 \end{array}$ S = 1.102108 reflections 263 parameters 3 restraints

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O2^{i} N3 - H3N \cdots O1^{ii} N3 - H3N \cdots N2 C7 - H7B \cdots O4^{iii}$	0.89 (3) 0.85 (3) 0.85 (3) 0.98	2.08 (3) 2.38 (3) 2.33 (3) 2.55	2.918 (2) 3.148 (3) 2.681 (3) 3.475 (3)	155 (3) 151 (2) 105 (2) 158

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.34 \times 0.29 \times 0.19 \text{ mm}$

reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

refinement $\Delta \rho_{\rm max} = 0.22$ e Å⁻³

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

independent and constrained

T = 113 K

Symmetry codes: (i) x + 1, y, z; (ii) x + 2, y - 2, z + 1; (iii) x - 1, y + 1, z - 1.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2009).

The project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars (No. 20071108-18-14), State Education Ministry. We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2308).

References

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Dominguez, C., Smith, L., Huang, Q., Yuan, C. & Ouyang, X. H. (2007). Bioorg. Med. Chem. Lett. 17, 6003-6008.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Khire, U. R., Bankston, D., Barbosa, J., Brittelli, D. R. & Caringal, Y. (2004). Bioorg. Med. Chem. Lett. 14, 783-786.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, 0476 [doi:10.1107/S1600536809055688]

4-[4-(3-Methoxybenzamido)phenoxy]-N-methylpicolinamide

N.-N. Meng, T.-T. Huang, D.-K. Li, W.-X. Zhang and L.-T. Yu

Comment

Sorafenib is of great importance owing to its antitumor properties (Khire *et al.*, 2004; Dominguez *et al.*, 2007). The title compound, as one of its derivatives, possessed even better *in vitro* anticancer activity against both two tumor cell lines (HCT116 and HEPG2). As a potent antitumor drug, we report here its crystal structure.

In the title molecule, $C_{21}H_{19}N_3O_4$, (Fig.1), the phenyl ring makes dihedral angles of 78.54 (6)° and 75.30 (6)° with the pyridine ring and the 3-methoxyphenyl ring, respectively. In the crystal structure, intermolecular N—H···O hydrogen-bond-ing interactions between the N—H and O atoms of 3-methoxyphenyl ring and carbonyl groups of the amide functionalities form an infinite three-dimensional structure (Table 1 and Fig. 2).

Experimental

To the suspension of anhydrous potassium carbonate (1.635 g,12.5 mmol) and 4-(4-aminophenoxy)-*N*-methylpicolinamide (1.22 g, 5 mmol) in 11.4 ml THF was added dropwise 3-methoxybenzoyl chloride(1.28 g,7.5 mmol). After being stirred at room temperature for 2 h, the mixture was extracted with 90 ml EA and 30 ml water for three times and the combined organic layers were dried over anhydrous Na₂SO₄. Then the solution was concentrated under vacuum, and the residue was recrystallized from ethanol to give the title compound. Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethanol.

Refinement

The two H atoms of N1 and N3 were located in a difference map and refined isotropically. The reminaing H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined using a riding model, with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. In the final stages of refinement, Friedel-pair reflections were merged.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. The cell packing of the title compound.

4-[4-(3-Methoxybenzamido)phenoxy]-N-methylpicolinamide

Crystal data	
C ₂₁ H ₁₉ N ₃ O ₄	Z = 1
$M_r = 377.39$	F(000) = 198
Triclinic, P1	$D_{\rm x} = 1.386 {\rm ~Mg~m}^{-3}$
a = 5.0915 (10) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 8.3251 (17) Å	Cell parameters from 1652 reflections
c = 11.611 (2) Å	$\theta = 2.7 - 27.8^{\circ}$
$\alpha = 71.29 \ (3)^{\circ}$	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 87.74 \ (3)^{\circ}$	T = 113 K
$\gamma = 76.10 \ (3)^{\circ}$	Block, colourless
$V = 452.14 (16) \text{ Å}^3$	$0.34 \times 0.29 \times 0.19 \text{ mm}$

Data collection

Rigaku Saturn CCD area-detector diffractometer	2108 independent reflections
Radiation source: rotating anode	1811 reflections with $I > 2\sigma(I)$
confocal	$R_{\rm int} = 0.026$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\text{max}} = 27.8^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
ω and ϕ scans	$h = -6 \rightarrow 4$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -10 \rightarrow 10$
$T_{\min} = 0.968, \ T_{\max} = 0.982$	$l = -14 \rightarrow 15$
3733 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: mixed
$wR(F^2) = 0.085$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.10	$w = 1/[\sigma^2(F_0^2) + (0.0481P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
2108 reflections	$(\Delta/\sigma)_{max} < 0.001$
263 parameters	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.3679 (3)	1.5504 (2)	0.23318 (15)	0.0212 (4)
O2	-0.1469 (3)	0.9491 (2)	0.56055 (17)	0.0249 (4)
03	0.4394 (3)	0.1895 (2)	0.81518 (15)	0.0220 (4)
O4	1.1345 (3)	0.2263 (2)	1.10678 (16)	0.0230 (4)
N1	0.3007 (3)	0.9089 (2)	0.60459 (17)	0.0154 (4)
H1N	0.443 (6)	0.954 (4)	0.579 (3)	0.031 (8)*
N2	1.0377 (4)	-0.1617 (2)	1.06587 (18)	0.0197 (4)
N3	1.3326 (4)	-0.0601 (3)	1.20340 (18)	0.0202 (4)
H3N	1.353 (6)	-0.166 (4)	1.208 (3)	0.025 (7)*
C1	0.0404 (4)	1.1969 (3)	0.48677 (19)	0.0138 (4)
C2	-0.1555 (4)	1.2811 (3)	0.3920 (2)	0.0157 (4)
H2	-0.2683	1.2179	0.3713	0.019*
C3	-0.1849 (4)	1.4569 (3)	0.3282 (2)	0.0166 (5)
C4	-0.0230 (4)	1.5503 (3)	0.3610 (2)	0.0186 (5)
H4	-0.0441	1.6711	0.3181	0.022*
C5	0.1675 (4)	1.4670 (3)	0.4559 (2)	0.0196 (5)
Н5	0.2754	1.5316	0.4784	0.024*
C6	0.2036 (4)	1.2891 (3)	0.5190 (2)	0.0167 (5)
H6	0.3377	1.2318	0.5830	0.020*
C7	-0.4855 (5)	1.4516 (3)	0.1769 (2)	0.0240 (5)
H7A	-0.6035	1.3902	0.2340	0.036*
H7B	-0.3410	1.3663	0.1549	0.036*
H7C	-0.5919	1.5310	0.1034	0.036*
C8	0.0553 (4)	1.0091 (3)	0.5533 (2)	0.0163 (4)
C9	0.3486 (4)	0.7259 (3)	0.66625 (19)	0.0145 (4)
C10	0.5761 (4)	0.6131 (3)	0.6406 (2)	0.0162 (4)
H10	0.7046	0.6589	0.5865	0.019*
C11	0.6152 (4)	0.4336 (3)	0.6942 (2)	0.0190 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H11	0.7689	0.3560	0.6763	0.023*
C12	0.4271 (4)	0.3690 (3)	0.7740 (2)	0.0174 (5)
C13	0.2105 (4)	0.4795 (3)	0.8055 (2)	0.0213 (5)
H13	0.0892	0.4336	0.8640	0.026*
C14	0.1710 (4)	0.6586 (3)	0.7512 (2)	0.0204 (5)
H14	0.0215	0.7356	0.7723	0.025*
C15	0.6403 (4)	0.0792 (3)	0.8978 (2)	0.0169 (5)
C16	0.6760 (5)	-0.0977 (3)	0.9182 (2)	0.0194 (5)
H16	0.5661	-0.1394	0.8757	0.023*
C17	0.8763 (5)	-0.2126 (3)	1.0024 (2)	0.0210 (5)
H17	0.9012	-0.3341	1.0161	0.025*
C18	0.9936 (4)	0.0107 (3)	1.0450 (2)	0.0163 (4)
C19	0.8000 (4)	0.1369 (3)	0.9625 (2)	0.0161 (4)
H19	0.7777	0.2578	0.9509	0.019*
C20	1.1623 (4)	0.0692 (3)	1.1206 (2)	0.0172 (5)
C21	1.4960 (5)	-0.0250 (3)	1.2878 (2)	0.0220 (5)
H21A	1.3916	0.0733	1.3122	0.033*
H21B	1.6598	0.0043	1.2484	0.033*
H21C	1.5470	-0.1288	1.3599	0.033*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0201 (8)	0.0162 (9)	0.0232 (9)	-0.0018 (6)	-0.0079 (6)	-0.0016 (7)
O2	0.0138 (7)	0.0175 (8)	0.0376 (10)	-0.0063 (6)	-0.0052 (7)	0.0017 (7)
03	0.0228 (8)	0.0134 (8)	0.0260 (9)	-0.0053 (6)	-0.0103 (7)	0.0010 (7)
O4	0.0243 (8)	0.0170 (9)	0.0262 (9)	-0.0024 (6)	-0.0048 (7)	-0.0060 (7)
N1	0.0118 (8)	0.0135 (9)	0.0184 (9)	-0.0030(7)	0.0003 (7)	-0.0017 (8)
N2	0.0229 (10)	0.0139 (10)	0.0209 (10)	-0.0021 (7)	-0.0008 (8)	-0.0053 (8)
N3	0.0245 (10)	0.0165 (11)	0.0183 (10)	-0.0019 (8)	-0.0045 (8)	-0.0054 (8)
C1	0.0115 (9)	0.0125 (10)	0.0163 (11)	-0.0010(7)	0.0023 (8)	-0.0047 (8)
C2	0.0125 (9)	0.0155 (11)	0.0195 (11)	-0.0034 (8)	0.0000 (8)	-0.0059 (9)
C3	0.0138 (10)	0.0149 (11)	0.0180 (11)	-0.0004 (8)	-0.0001 (8)	-0.0032 (9)
C4	0.0187 (11)	0.0121 (11)	0.0227 (12)	-0.0029 (8)	0.0017 (9)	-0.0032 (9)
C5	0.0179 (11)	0.0174 (12)	0.0260 (13)	-0.0069 (8)	0.0007 (9)	-0.0085 (10)
C6	0.0136 (10)	0.0171 (12)	0.0189 (11)	-0.0029 (8)	-0.0014 (8)	-0.0056 (9)
C7	0.0237 (12)	0.0198 (12)	0.0272 (12)	0.0009 (9)	-0.0095 (10)	-0.0088 (10)
C8	0.0139 (10)	0.0159 (11)	0.0174 (11)	-0.0024 (8)	0.0000 (8)	-0.0038 (9)
C9	0.0134 (9)	0.0137 (11)	0.0142 (10)	-0.0016 (8)	-0.0038 (8)	-0.0021 (8)
C10	0.0129 (10)	0.0169 (11)	0.0179 (11)	-0.0037 (8)	0.0012 (8)	-0.0043 (9)
C11	0.0168 (10)	0.0166 (11)	0.0217 (11)	-0.0005 (8)	-0.0025 (9)	-0.0057 (9)
C12	0.0200 (11)	0.0130 (11)	0.0164 (11)	-0.0055 (8)	-0.0073 (9)	0.0010 (9)
C13	0.0188 (11)	0.0206 (12)	0.0206 (12)	-0.0061 (8)	0.0018 (9)	-0.0006 (9)
C14	0.0177 (11)	0.0209 (12)	0.0185 (11)	-0.0017 (8)	0.0027 (8)	-0.0031 (9)
C15	0.0168 (10)	0.0147 (11)	0.0146 (11)	-0.0018 (8)	-0.0010 (8)	0.0002 (9)
C16	0.0229 (11)	0.0179 (12)	0.0190 (11)	-0.0069 (9)	0.0001 (8)	-0.0064 (9)
C17	0.0276 (12)	0.0116 (10)	0.0220 (12)	-0.0034 (8)	0.0005 (9)	-0.0040 (9)
C18	0.0182 (11)	0.0152 (11)	0.0143 (10)	-0.0053 (8)	0.0034 (8)	-0.0027 (9)

C19	0.0189 (10)	0.0131 (10)	0.0147 (10)	-0.0043 (8)	0.0014 (8)	-0.0021 (9)
C20	0.0155 (10)	0.0195 (12)	0.0162 (11)	-0.0034 (8)	0.0022 (8)	-0.0060 (9)
C21	0.0206 (11)	0.0253 (13)	0.0203 (11)	-0.0024 (9)	-0.0031 (9)	-0.0091 (10)
Geometric par	ameters (Å, °)					
O1—C3		1.369 (3)	С7—	H7A	0.98	300
O1—C7		1.440 (3)	С7—	H7B	0.98	300
O2—C8		1.237 (3)	С7—	H7C	0.98	300
O3—C15		1.368 (3)	С9—	C14	1.38	37 (3)
O3—C12		1.402 (3)	С9—	C10	1.39	94 (3)
O4—C20		1.239 (3)	C10–	-C11	1.38	39 (3)
N1—C8		1.360 (3)	C10-	-H10	0.95	500
N1—C9		1.424 (3)	C11-	-C12	1.38	37 (3)
N1—H1N		0.89 (3)	C11–	-H11	0.95	500
N2-C18		1.340 (3)	C12–	C13	1.37	76 (3)
N2-C17		1.346 (3)	C13–	C14	1.38	37 (3)
N3—C20		1.337 (3)	C13–	-H13	0.95	500
N3—C21		1.450 (3)	C14-	-H14	0.95	500
N3—H3N		0.85 (3)	C15–	-C16	1.38	32 (3)
C1—C6		1.391 (3)	C15–	-C19	1.38	37 (3)
C1—C2		1.397 (3)	C16–	-C17	1.38	36 (3)
C1—C8		1.491 (3)	C16–	-H16	0.95	500
C2—C3		1.386 (3)	C17–	–H17	0.95	500
С2—Н2		0.9500	C18–	-C19	1.38	37 (3)
C3—C4		1.397 (3)	C18–	-C20	1.51	10 (3)
C4—C5		1.380 (3)	C19–	-H19	0.95	500
С4—Н4		0.9500	C21–	-H21A	0.98	300
C5—C6		1.396 (3)	C21–	-H21B	0.98	300
С5—Н5		0.9500	C21–	-H21C	0.98	300
С6—Н6		0.9500				
C3—O1—C7		116.81 (17)	C11–	-С10-С9	120	.1 (2)
C15—O3—C12	2	119.17 (17)	C11–	-C10-H10	120	.0
C8—N1—C9		122.98 (18)	С9—	C10—H10	120	.0
C8—N1—H1N		116 (2)	C12-	-C11-C10	119	.2 (2)
C9—N1—H1N		118 (2)	C12-	-C11-H11	120	.4
C18—N2—C17	7	116.25 (18)	C10–	-C11—H11	120	.4
C20—N3—C21		121.4 (2)	C13–	-C12-C11	121	.2 (2)
C20—N3—H3N	N	122 (2)	C13–	-C12-O3	118	.26 (19)
C21—N3—H31	N	117 (2)	C11–	-C12-O3	120	.3 (2)
C6—C1—C2		120.42 (19)	C12–	C13C14	119	.4 (2)
C6—C1—C8		122.61 (19)	C12–	-C13-H13	120	.3
C2—C1—C8		116.91 (19)	C14–	-C13-H13	120	.3
C3—C2—C1		119.96 (19)	C13–	C14C9	120	.4 (2)
С3—С2—Н2		120.0	C13–	C14H14	119	.8
C1—C2—H2		120.0	С9—	C14—H14	119	.8
O1—C3—C2		124.4 (2)	03—	C15—C16	116	.9 (2)
O1—C3—C4		115.84 (19)	03—	C15—C19	123	.2 (2)
C2—C3—C4		119.77 (19)	C16–	-C15-C19	119	.86 (19)

C5—C4—C3	120.0 (2)	C15—C16—C17	118.2 (2)
C5—C4—H4	120.0	C15—C16—H16	120.9
C3—C4—H4	120.0	С17—С16—Н16	120.9
C4—C5—C6	120.8 (2)	N2—C17—C16	123.7 (2)
C4—C5—H5	119.6	N2—C17—H17	118.1
С6—С5—Н5	119.6	С16—С17—Н17	118.1
C1—C6—C5	119.04 (19)	N2—C18—C19	124.8 (2)
С1—С6—Н6	120.5	N2—C18—C20	116.87 (18)
С5—С6—Н6	120.5	C19—C18—C20	118.32 (19)
O1—C7—H7A	109.5	C18—C19—C15	117.2 (2)
O1—C7—H7B	109.5	С18—С19—Н19	121.4
H7A—C7—H7B	109.5	С15—С19—Н19	121.4
O1—C7—H7C	109.5	O4—C20—N3	124.1 (2)
Н7А—С7—Н7С	109.5	O4—C20—C18	120.93 (19)
H7B—C7—H7C	109.5	N3—C20—C18	115.0 (2)
O2—C8—N1	122.4 (2)	N3—C21—H21A	109.5
O2—C8—C1	120.97 (19)	N3—C21—H21B	109.5
N1—C8—C1	116.65 (19)	H21A—C21—H21B	109.5
C14—C9—C10	119.6 (2)	N3—C21—H21C	109.5
C14—C9—N1	120.77 (18)	H21A—C21—H21C	109.5
C10—C9—N1	119.64 (19)	H21B—C21—H21C	109.5
C6—C1—C2—C3	1.0 (3)	C15—O3—C12—C13	-113.2 (2)
C8—C1—C2—C3	178.42 (18)	C15—O3—C12—C11	72.9 (3)
C7—O1—C3—C2	-16.6 (3)	C11—C12—C13—C14	3.7 (3)
C7—O1—C3—C4	164.13 (19)	O3—C12—C13—C14	-170.2 (2)
C1—C2—C3—O1	179.13 (19)	C12—C13—C14—C9	-0.3 (3)
C1—C2—C3—C4	-1.6 (3)	C10-C9-C14-C13	-3.6 (3)
O1—C3—C4—C5	-180.0 (2)	N1—C9—C14—C13	176.2 (2)
C2—C3—C4—C5	0.7 (3)	C12—O3—C15—C16	-168.06 (19)
C3—C4—C5—C6	0.8 (3)	C12—O3—C15—C19	13.8 (3)
C2—C1—C6—C5	0.5 (3)	O3—C15—C16—C17	-179.4 (2)
C8—C1—C6—C5	-176.77 (19)	C19—C15—C16—C17	-1.1 (3)
C4—C5—C6—C1	-1.4 (3)	C18—N2—C17—C16	0.8 (3)
C9—N1—C8—O2	2.7 (3)	C15-C16-C17-N2	0.3 (4)
C9—N1—C8—C1	-177.13 (19)	C17—N2—C18—C19	-1.2 (3)
C6—C1—C8—O2	149.6 (2)	C17—N2—C18—C20	176.7 (2)
C2—C1—C8—O2	-27.7 (3)	N2-C18-C19-C15	0.3 (3)
C6—C1—C8—N1	-30.6 (3)	C20-C18-C19-C15	-177.45 (19)
C2C1C8N1	152.10 (19)	O3-C15-C19-C18	178.95 (19)
C8—N1—C9—C14	-46.8 (3)	C16—C15—C19—C18	0.8 (3)
C8—N1—C9—C10	133.0 (2)	C21—N3—C20—O4	1.9 (3)
C14-C9-C10-C11	4.1 (3)	C21—N3—C20—C18	-176.19 (19)
N1-C9-C10-C11	-175.67 (19)	N2-C18-C20-O4	179.9 (2)
C9—C10—C11—C12	-0.7 (3)	C19—C18—C20—O4	-2.2 (3)
C10-C11-C12-C13	-3.2 (3)	N2-C18-C20-N3	-2.0 (3)
C10-C11-C12-O3	170.56 (18)	C19-C18-C20-N3	175.94 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1N···O2 ⁱ	0.89 (3)	2.08 (3)	2.918 (2)	155 (3)
N3—H3N···O1 ⁱⁱ	0.85 (3)	2.38 (3)	3.148 (3)	151 (2)
N3—H3N…N2	0.85 (3)	2.33 (3)	2.681 (3)	105 (2)
C7—H7B···O4 ⁱⁱⁱ	0.98	2.55	3.475 (3)	158
C14—H14…O2	0.95	2.56	2.887 (3)	100
Symmetry codes: (i) <i>x</i> +1, <i>y</i> , <i>z</i> ; (ii) <i>x</i> +2, <i>y</i> -2, <i>z</i>	z+1; (iii) x-1, y+1, z-1.			

